We’re in the home stretch here at bpmNEXT 2018, day 3 has only a couple of shorter demo sessions and a few related talks before we break early to head home.
When Artificial Intelligence meets Process-Based Applications, Bonitasoft
Nicolas Chabanoles and Nathalie Cotte from Bonitasoft presented on their integration of AI with process applications, specifically for predictive analytics for automating decisions and making recommendations. They use an extension of process mining to examine case data and activity times in order to predict, for example, if a specific case will finish on time; in the future, they hope to be able to accurately predict the end time for individual cases for better feedback to internal users and customers. The demo was a loan origination application built on Bonita BPM, which was fairly standard, with the process mining and machine learning coming in with how the processes are monitored. Log data is polled from the BPM system into an elastic search database, then machine learning is applied to instance data; configuration of the machine learning is based (at this point) only on the specification of an expected completion time for each instance type to build the predictions model. At that point, predictions can be made for in-flight instances as to whether each one will complete on time, or its probability of completing on time for those predicted to be late — for example, if key documents are missing, or the loan officer is not responding quickly enough to review requests. The loan officer is shown what tasks are likely to be causing the late prediction, and completing those tasks will change the prediction for that case. Priority for cases can be set dynamically based on the prediction, so that cases more likely to be late are set to higher priority in order to be worked earlier. Future plans are to include more business data and human resource data, which could be used to explicitly assign late cases to individual users. The use of process mining algorithms, rather than simpler prediction techniques, will allow suggestions on state transitions (i.e., which path to take) in addition to just setting instance priority.
Understanding Your Models and What They Are Trying To Tell You, KnowProcess
Tim Stephenson of KnowProcess spoke about models and standards, particularly applied to their main use case of marketing automation and customer onboarding. Their ModelMinder application ingests BPMN, CMMN and DMN models, and can be used to search the models for activities, resources and other model components, as well as identify and understand extensions such as calling a REST service from a BPMN service task. The demo showed a KnowProcess repository initially through the search interface; searching for “loan” or “send memo” returned links to models with those terms; the model (process, case or decision) can be displayed directly in their viewer with the location of the search term highlighted. The repository can be stored as files or an engine can be directly indexed. He also showed an interface to Slack that uses a model-minder bot that can handle natural language requests for certain model types and content such as which resources do the work as specified in the models or those that call a specific subprocess, providing a link directly back to the models in the KnowProcess repository. Finishing up the demo, he showed how the model search and reuse is attached to a CRM application, so that a marketing person sees the models as functions that can be executed directly within their environment.
Instead of a third demo, we had a more free-ranging discussion that had started yesterday during one of the Q&As about a standardized modeling language for RPA, led by Max Young from Capital BPM and with contributions of a number of others in the audience (including me). Good starting point but there’s obviously still a lot of work to do in this direction, starting with getting some of the major RPA vendors on board with standardization efforts. The emerging ideas seem to center around defining a grammar for the activities that occur in RPA (e.g., extract data from an Excel file, write data to a certain location in an application screen), then an event and flow language to piece together those primitives that might look something like BPMN or CMMN. I see this as similar to the issue of defining page flows, which are often done as a black box function that is performed within a human activity in a BPMN flow: exposing and standardizing that black box is what we’re talking about. This discussion is a prime example of what makes bpmNEXT great, and keeps me coming back year after year.